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A l R F O I L   C H A R A C T E R I S T I C S   I N  A NONEQUILIBRIUM AMBIENT 

STFSAM BASED ON LINEARIZED THEORY 

By James J. Der 

Ames Research  Center 
Moffett  Field, Calif. 

SUMMARY 

The aerodynamic c h a r a c t e r i s t i c s  of a l i f t i n g  body i n  a nonequilibrium 
stream  are  studied  for a simple  case, namely, the  case of a nonequilibrium 
oncoming stream  past a t h i n   a i r f o i l  a t  a small angle of a t tack.   Analyt ical  
solutions  are  obtained by the  use of nonequilibrium  linearized  theory. 
Results show t h a t  when the  re laxat ion  length on the  windward s ide of the  air-  
f o i l  i s  not  appreciably  different from t h a t  on the  leeward  side, a nonequi- 
l ibr ium ambient  condition w i l l  normally  induce a higher  pressure  and  lower 
drag,  but w i l l  not   affect   the  l i f t ,  pi tching moment, and the  center  of pres- 
sure.  ?"ne local  nonequilibrium  condition  behind  the  leading-edge  shock, on 
the  other hand, w i l l  a f f e c t  a l l  of the  aerodynamic cha rac t e r i s t i c s   i n   gene ra l .  
When the  re laxat ion  length on the  windward side i s  s ign i f i can t ly   d i f f e ren t  
from t h a t  on the  leeward  side, on the  other hand, the  nonequilibrium  ambient 
condition w i l l  a l so   a f f ec t   t he  l i f t ,  pi tching moment, and  the  center of pres- 
sure.  In  general ,   the  higher  suction on the  leeward  side  gives  higher l i f t  
and la rger   p i tch ing  moment because  the  condition on the  leeward  side i s  
c loser   to   f rozen .  

INTRODUCTION 

The present  study i s  motivated by t h e   d e s i r e   t o   l e a r n  something  about 
t h e   e f f e c t s  of a nonequilibrium  condition  in  the  ambient  stream on the  aero- 
dynamic c h a r a c t e r i s t i c s  of a body. For an   a rb i t r a ry  body,  such a study would 
normally  require  detailed  numerical  calculation of the  flow  around  the body, 
with  the  free-stream  condition  out of equilibrium.  Calculations of t h i s   t ype  
a re ,   i n   gene ra l ,   t ed ious .  

A case  for  which we can  obtain a simple ana ly t i ca l   so lu t ion  i s  t h e  non- 
equilibrium  flow  past a t h i n   a i r f o i l  a t  a small angle of a t tack .  From t h e  
r e s u l t s  of t h i s   c a s e  we can  discover some indicat ion of  what the  ambient non- 
equilibrium would do t o   t h e   c h a r a c t e r i s t i c s  of a l i f t i n g  body, with or without 
the   loca l   f low  condi t ion   in   equi l ibr ium.  

In   o rder   to   s tudy  problems whose solutions  can  be  obtained  analytically,  
we s h a l l  use a small-disturbance  theory  for  nonequilibrium  flow.  This  theory 
and i t s  l imi ta t ions  have  been  described  by  Vincenti i n  reference 1, where  he 
introduced a model for  flow  with  nonequilibrium  ambient  conditions. The use 



of a small-disturbance  theory limits the   quant i ta t ive   accuracy   of   the   resu l t s .  
The r e s u l t s  are no t ,   t he re fo re ,   i n t ended   t o  be   accu ra t e   so lu t ions   t o   p rac t i ca l  
problems,  but  rather as qualitative  information  about  the  aerodynamic  charac- 
t e r i s t i c s  of a i r f o i l s   i n  a nonequilibrium  ambient stream. 

In  the  following  sections,   the  physical   aspects  of  the  problem  are f irst  
described. A s o l u t i o n   t o  the governing  equation i s  then  obtained. The r e s u l t  
i s  app l i ed   t o   b i convex   a i r fo i l s  a t  angles of attack  near  zero where the   re lax-  
ation  t ime  of  the  lower  surface i s  c l o s e   t o   t h a t  of t h e  upper  surface. 
Final ly ,   the   general   case of a n   a i r f o i l  w i t h  dif ferent   values   of   re laxat ion 
times on the  upper  and  lower  surfaces i s  discussed,   and  expl ic i t   expressions 
f o r   t h e  aerodynamic coef f ic ien ts   a re   g iven   for   the   case  where the  condi t ion 
on t h e  upper  surface i s  frozen  (with  the  f low on t h e  lower  surface  in  nonequi- 
librium condi t ion   in   genera l ) .  

PRINCIPAL SYMBOLS 

a 

C .p. 

CD 

CL 

Cm 

pe2 
P f 2  

equilibrium  sonic  speed 

frozen  sonic  speed 

a function  defined  by  eyuation (4)  

CM 
CL 

center  of  pressure,  - 

drag   coef f ic ien t ,  b a g  

(1/2) p,UW2 chord  length 

lift coe f f i c i en t ,  l i f t  

(1/2) p,Um2 chord  length 

moment coef f ic ien t ,  p i tch ing  moment 

(1/2) p,U,' chord  length2 

pressure   coef f ic ien t ,  
P - P, 

(1/2 ) P,UW2 

2 



h 

IO 

K 

2 

CL 

Pe 

enthalpy 

modified  Bessel  function  of  the f irst  kind,  zero  order 

- chord  length 
K 

pressure 

nonequilibrium  variable  (e.g.,  degree of d i ssoc ia t ion)  

Laplace  transform  variable 

ve loc i ty   i n   t he  x and y direct ions,   respect ively 

free-  stream  velocity 

Cartesian  coordinates   paral le l  and  normal to   t he   f r ee - s t r eam  d i r ec -  
t ion ,   respec t ive ly  

angle of a t tack  (with  respect  of the   f ree-s t ream  d i rec t ion)  

I" 

b( E )  angle of t h e  boundary a t  7 = 0 wi th   r e spec t   t o   t he  free-stream 
d i rec t ion  

skew coordinates; E = and 7 = - x - PfY P f Y  
K K 

a funct ion of 5 = +eu = 

densi ty  

r a t i o  of the  relaxation  lengths  of  the  lower and the  upper  surfaces 

- 82 
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70 

Cp 

relaxation  time  behind  the  leading-edge  shock 

normalized  perturbation  velocity  potential ,   d-efined  by  the 

r e l a t i o n s  KTx = and KTy = v,, or 06 = and 
u - u, v u - u, 
urn urn 

my - 'pg = + 
fco 

Laplace  transform of Cp, $" exp(-sE)Cp( 6,V)dE 
0 

Super s c r i p t s  and Sub s c r i p t s  

equilibrium  value 

Lzplace  transformed  quantity 

der iva t ive  of ( ) wi th   r e spec t   t o  i t s  argument 

upper  surface of t h e   a i r f o i l  

lower  surface of t h e   a i r f o i l  

free-stream  value 

due t o  nonequilibrium  free  stream 

pa r t i a l   de r iva t ives   w i th   r e spec t  t o  the  subscr ipts  

PKYSICAL DESCRIPTION 

We s h a l l   c o n s i d e r   a n   a i r f o i l   i n  a supersonic  stream  (fig - 1) . The 
ambient  stream i s  uniform  but  can  be  in a nonequilibrium  condition.  This  can 
be  expounded as follows: Let t h e   s t a t e  of the  flowing  gas  be  determined by 
the  pressure  p,   density p, and a nonequilibrium  variable q (e  .g. ,   degree 
of d i ssoc ia t ion  or vibra t iona l   energy) .  The enthalpy  h ,   for  example, i s  a 
funct ion of these  independent thermodynamic var iab les  as h = h(p ,p ,q ) .  The 
s t a t e  of the  gas  i s  sa id  t o  be  in   equi l ibr ium i f  q s a t i s f i e s   t h e   r e l a t i o n  
q = q*(p ,  p), otherwise  the  s ta te   of   the   gas  i s  out  of  equilibrium. If q 
takes  a f ixed  value,   that  i s ,  q equals a cons tan t ,   the   s ta te  of the  gas  i s  

4 



s a i d   t o   b e  i n  a frozen  condition. I n  
the problem we are considering, q i s  

Y 

t 
out of equilibrium  everywhere  including 
i n  t h e  free stream, where free  streom 

Uniform , Leoding-edge shock 
Trailing-edge 

4,#4$ shock 

9, # S*(Prn,Prn) = \* - 
_c 

The ambient  flow i s  t a k e n   t o  be  paral- - 
l e 1   t o   t h e  x ax i s .  It i s  assumed - 
that   the  f low  ahead of t h e   a i r f o i l  i s  
uniform  with  respect t o  both x and y.  \ \ 
Thus,  the  relaxation  t ime  in  the free 
stream, T,, i s  assumed t o  be  large.  
Behind the  leading-edge  shock,  however, 

Figure 1 .- A i r f o i l s  i n  a nonequilib- 
rim free  stream. 

the  re laxat ion  t ime1 of t h e   f l u i d  i s  
reduced due t o  compression,  and  chemical  reaction  or  vibrational  relaxation 
w i l l  take  place.   For  f low  past   an a i r f o i l  a t  an angle   of   a t tack,   the  amount 
of reduction of the  relaxation  t ime  across  the  leading-edge shock on the  wind- 
ward surface i s  la rger   than  t h a t  on the  leeward  surface  because of higher 
compression on the  lower s ide .  We can   c lass i fy   the   s i tua t ion   in to   th ree  
cases : 

1. When the  angle  of a t t ack  a i s  much smaller  than  the  leading-edge 
slope 8, of t he   a i r fo i l ,   t he   r e l axa t ion   t ime  on t h e  upper  (leeward)  surface, 
T ~ ,  i s  approximately  the same as t h a t  on the  lower  (windward)  surface, 7 2 .  
The deviat ion from equilibrium i s  the  same  on the  two surfaces .  

2. When a i s  smaller  but of t h e  same order as eo, compressive  shocks 
s t i l l  occur a t   t h e   l e a d i n g  edge on both  surfaces.  Since T~ < T ~ ,  however, 
the  f low on the  lower  surface w i l l  be  closer t o   equ i l ib r ium  than   t ha t  on t h e  
upper  surface. 

3 .  When a i s  grea te r   than  eo, a compressive  shock  occurs a t   t he   l ead -  
ing edge on t h e  lower  surface,  but  the f low on t h e  upper  surface i s  under 
expansion, which means Tu i s  la rger   than  T,, hence, i s  very  large.  Conse- 
quently,  the  flow on the  upper  surface i s  i n  a frozen  condition. 

We s h a l l  t reat  case 1 (Tu = -rl) in   de ta i l ,   g iv ing   bo th   expl ic i t   expres-  
sions  and  numerical   results.  Only a n a l y t i c a l   r e s u l t s  w i l l  be  presented for 
the   other   cases ,  which w i l l  be   discussed  qual i ta t ively.  

To a t t a c k   t h i s  problem ana ly t i ca l ly ,  we s h a l l   r e s t r i c t  our study t o  a 
two-dimensional  flow f i e l d  that i s  per turbed  s l ight ly  from the  uniform 
- - "_ "" , , . , . ..,. . . . ~ ". _ _  _ _  L~ _. ." ____ 

%e re laxa t ion  time i s  a charac te r i s t ic   reac t ion   t ime.  It i s  essen- 

2An exceptional  case i s  the  f low  past  a wedge. The degree of nonequilib- 
t i a l l y   t h e  time requi red   for  a gas   to   reach  an  equi l ibr ium state. 

rium in   t he   f r ee   s t r eam may be  such  that  equilibrium on the  upper  surface i s  
reached  imediately  behind  the  leading-edge  shock,  whereas it i s  not  reached 
on t h e  lower  surface.  This  case i s  not   t rea ted   here ,  however, since we a r e  
in te res ted   mos t ly   in   a i r fo i l s   having   c losed   prof i les .  

5 
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nonequilibrium  free- stream condition. The relaxat ion  t ime,  however, i s  
assumed t o  be  reduced  by  an  order  of  magnitude  across the i n i t i a l  shock. Such 
an  assumption  for   the  re laxat ion  t ime i s  hardly  consistent  with  the  assumption 
of small disturbances.  When the  disturbances  are  indeed small the   re laxa t ion  
time  behind  the  leading-edge  shock  can  be  finite  only i f  the  f ree-s t ream 
relaxat ion  t ime i s  f i n i t e  so  t h a t  nonuniform  conditions exist i n   t h e   f r e e  
stream. When the  dis turbances are so l a rge  that the   re laxa t ion   t ime i s  
reduced by an  order of magnitude,  the  assumption of small disturbances i s  vio- 
la ted.   Nevertheless ,  it i s  expec ted   t ha t   fo r   e i t he r  of these two cases   the  
l i nea r   t heo ry  should give  indications  of  the  f low phenomena  on t h e   a i r f o i l  
surface,  a t  l e a s t   q u a l i t a t i v e l y   c o r r e c t .  The nonequilibriwn  variable  can  be 
any  of t h e  common ones,  for  example,  degree of d i ssoc ia t ion ,  but we assume 
that   only one nonequilibrium mechanism i s  of  importance a t  a time.  This i s  
t h e  same flow model with which Vincent i   ( ref .  1) studied  the  f low  over a wedge 
i n  a nonequilibrium oncoming stream. 

AN ANALYTICAL SOLUTION 

With the  assumptions  enumerated in   the   p rev ious   sec t ion  we can  describe 
the  flow  behind  the  leading-edge shock  by a l inear   equat ion  in   terms of a 
per turba t ion   ve loc i ty   po ten t ia l  Cp- This  equation has been  derived  by 
Vincen t i   ( r e f .  1) f o r  the  upper  plane,   that  i s ,  for   pos i t ive   y .  We shall 
ob ta in   the   p ressure   d i s t r ibu t ion  on the  upper  plane,   noting  that   the  result ing 
expression i s  va l id   fo r   t he  lower  plane by  simply replacing y by  -y.   In a 
l inear ized   theory ,   the  shock wave co inc ides   w i th   t he   i n i t i a l  Mach l i n e .   I n  
the  nonequilibriwn  l inearized  theory,   the shock wave coincides  with the i n i -  
t i a l  frozen Mach l ine.   Since y = x/Pf i s  t h e   i n i t i a l   f r o z e n  Mach l i n e  on 
the  upper  plane, a l l  disturbances  occur  in x > Pfy. It w i l l  be  convenient 
t o  use ,   in   p lace  of the  Cartesian  coordinates  x and y ,   the  skew coordinates 
E ( x  - Pfy)/K  and ri Pfy/K. The flow  quantity K i s  p r o p o r t i o n a l   t o  the 
re laxa t ion   length  T~U, and i s  an  important   character is t ic   length  in  a non- 
equilibrium f l o w .  To so lve   the   resu l t ing   po ten t ia l   equa t ion  we shall use  the 
method  of kp lace   t ransforms.  

The kplace   t ransformat ion  of the  f low  equation i s  given by Vineenti, 
who obtained  the  transformed  solution  for-the  upper  plane,   that  i s ,  pos i t ive  
7, (eq.  (54) of r e f .  1) as 

The quan t i t i e s  A(s) and B ( s )  a r e   t o  be  determined  from  the  boundary 
conditions.  The quantity G,( % - *)/(s2Pf) comes from the  nonequilibriwn 
ambient  condition. It vanishes when s, = &*. , Since G, and ( q, - qw*) 
are normally  posi t ive  ( ref .  1) , the  value of G,( Q - q,*)/Pf i s  normally 
posikive.  

q, 

The boundary  conditions  are: (1) the   d i s turbances   a re  bounded,  and (2 )  
the   s t ream  l ine  i s  p a r a l l e l   t o   t h e  boundary a t  t h e   a i r f o i l   s u r f a c e ,  which  can 
be t a k e n   t o   b e  a t  y = 0 (hence 7 = 0) f o r   t h e  small disturbance  theory.  

6 



The first boundary  condition means tha t   the   va lue  of B(s) must be   ident ica l ly  
zero;  otherwise  the  disturbances grow without bound as 7 + 03. The second 
boundary  condition means 

'p&o) - 'pg(5,o) = m / P f  
or 

Qrl(S,O) - so(s,o) = %(S)/Pl =-. L[8(5) I /Pf  ( 2 )  

where 6 (  6 )  is  the  slope  of  the  boundary a t  7 = 0 wi th   r e spec t   t o   t he  free 
stream.  This  boundary  condition  gives  the  value of A(  s )  . A s  a r e s u l t  we 
obtain  the  transformed  value  of 'pg(  6,q)  = (u - U,>/U, as 

The inversion of th i s   t ransformed  re la t ion  w i l l  give  the  value of 
(u  - U,)/U,, which a l so   g ives   the   va lue  of the  pressure and  enthalpy  since, 
wi th in   the  f irst  order ,  

Similar  expressions f o r  other f l o w  quantit ies  can  also  be  obtained. 

The inverse  transform of t he  las t  term  in  the  r ight-hand  side of equa- 
t i o n  (3)  i s  simply -G,(q, - q,*)/Pf. No expl ic i t   invers ion  f o r  the  remaining 
terms in   the   r igh t -hand  s ide  i s  known. Possibly  they  can  be  obtained  by 
numerical means, (e  .g . , a method proposed by R .  Bellman, e t  a l .  ( r e f .  2 )  ) . 

our present   in te res t  i s ,  however,  only the   p ressure   d i s t r ibu t ion  on the  
boundary,  that i s ,  a t  7 = 0 For th i s   case   the   exponent ia l   fac tor  i s  uni ty .  
The inverse  transforms of 1/( s a) and 8 / a  can  be  obtained  from a transform 
t a b l e  (e . g . ,   r e f .  3 ) .  They a r e  

where Io i s  the  modified  Ekssel  function of t he  f i r s t  kind,  zero  order,  and 

7 



The pressure   d i s t r ibu t ion  on a boundary a t  7 = 0 with  slope 6( E )  i s ,  
therefore,   given  by  the  expression 

which i s  quite  general   for  any smooth 6( 5 )  . 
The above equation i s  der ived  for  y (hence 7) = O+. Therefore it gives 

the  pressure on t h e  upper  surface. It i s  applicable on the  lower  surface 
( 7  = 0-) i f  one replaces  y by  -y   in   the  der ivat ion.   This  would r e s u l t   i n  
replacing 6 by -6  i n  the  above equation  for  the  lower  surface. Hence we can 
express   the  pressure on the  upper  surface,  pu, and  lower surface,   p l ,  by t h e  
r e l a t i o n s  

The f i r s t  two terms i n  the  r ight-hand  side of equations (6a) and  (6b) 
g ive   the   p ressure   d i s t r ibu t ion  on the  boundary when t h e  ambient  stream  ahead 
of the  leading-edge shock i s  i n  an  equilibrium  condition. The las t  term gives 
t h e   e f f e c t s  of nonequilibrium  free-stream  conditions on the  pressure.  Within 
the   f i r s t -o rde r   t heo ry ,   t he re fo re ,   t he   e f f ec t  of nonequilibrium  ambient  condi- 
t i o n  i s  i n  the  form  of a simple  additive  quantity.  The consequences of such 
we& coupling t o   t h e  aerodynamic c h a r a c t e r i s t i c s  of a n   a i r f o i l  w i l l  be dis-  
cussed in   the   next   sec t ion .  Because G, and q, - qW* are  normally  posit ive,  
when t h e   a d i e n t   s t r e a m  i s  not i n  equilibrium,  the  pressure on t h e  boundary 
i s  normally  higher  with  the  additive  pressure  proportional t o  Gco(qco - Q*) . 

CHA.RAC!TERISTICS OF AIISFOILS FOR THX CASE KU K i  

We s h a l l  now cons ider   an   a i r fo i l  a t  an angle of a t t a c k .   F i r s t ,  we s h a l l  
s t u d y   t h i n   a i r f o i l s   i n   g e n e r a l .   k t e r ,  we sha l l   app ly   t he   r e su l t s   t o  a spe- 
c i f i c   a i r f o i l ,  namely, the   b iconvex   a i r fo i l .  The case  for  which the  rela.xa,- 
t ion  t imes  are  approximately  the same on the  upper  and  lower surfaces w i l l  be 
t r ea t ed   p re sen t ly .  This i s  case 1 mentioned in   the  previous  sect ion.  The 
case of Ku f K1 w i l l  be t rea ted   in   the   next   sec t ion .  

The slope Ou f o r   t h e  upper  surface of an  a i r f o i l  can  be  writ ten,   for 
convenience, 

8, = a 5 )  = Q,f( 5 /11 
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where 00 i s  the  leading-edge  slope, f (  E/l) represents   the  var ia t ion  a long 
the  chord l i n e ,  and 2 i s  the  chord  length  divided by K, (Reca l l   tha t  E 
i s  the  streamwise  distance from the   l ead ing  edge  divided  by K. ) A t  an angle 
of a t tack   the   s lope  of the  upper  surface  with  respect t o   t h e  free-stream 
d i rec t ion  i s  6, = 6' - a. The slope  of  the  lower  surface  with  respect t o   t h e  
f ree-s t ream  direct ion i s ,  f o r  a symmetric a i r f o i l ,  62 = - (0 + a). By subst i -  
t u t i o n  of EU and 61 into  equat ions (6)  we ob ta in   the   p ressure   coef f ic ien ts  
f o r   t h e  upper  surface, Cpu, and t h a t   f o r   t h e  lower  surface,  cpz, as 

where the  upper  sign  goes  with CpU and t h e  lower  with  Cp2. 

The various  terms  in  equation (7) can  be  interpreted as follows: If the  
anibient  stream i s  not i n  equilibrium  (e .g ., frozen i n  a cer ta in   degree of 
dissociation),   then  after  the  f low  passes  the  leading-edge  shock,  the sudden 
reduction of the   re laxa t ion   t ime (due t o   t h e  compression)  induces  recombina- 
t i o n ,  and the  degree of dissociation  tends  toward an equi l ibr ium  value  a t  a 
speed  governed by the  magnitude of the  relaxation  length  behind  the  shock. 
This pressure  r ise   induced by the  recombination i s  given by the  term  inside 
t h e  f i r s t  bracke t -  It can  also  be,  of course, due t o  other  types of re lax-  
a t ion ,  for example,  molecular  vibration. The term  inside  the  second  bracket 
g ives   the   p ressure   d i s t r ibu t ion  on the  surface due to   t he   con tour  of t h e  air- 
f o i l .  This port ion of the  pressure  dis t r ibut ion  corresponds  to   that  of t he  
"thickness  case" (ref.  4)  i n  classical   aerodynamics.  Here, of course,   in  con- 
trast  t o  c lass ical   f lows,   the   local   condi t ions  can  be  e i ther   equi l ibr ium  or  
nonequilibrium.  Finally,   the last  te rm  g ives   the   p ressure   d i s t r ibu t ion  due t o  
the  angle  of a t t ack ,  and  corresponds t o   t h e   p r e s s u r e  r ise  on a f la t  p l a t e  a t  
an  angle of a t t a c k   i n   t h e   c l a s s i c a l   c a s e .  With the  expressions  for  Cpv and 
Cp2 we can compute t h e  aerodynamic coe f f i c i en t s  by the  following relations. 

I 



while  the  center of pressure i s  

c.p.  = C d C L  

Using equation (7) f o r  CP, and Cp2 we obtain 

(15 1 
where 

Equations (12), (l3), and (14) show tha t ,   w i th in   t he   f i r s t -o rde r  accu- 
racy,  the l i f t ,  pi tching moment, and  the  center of pressure of a n   a i r f o i l   a r e  
not   affected by the  nonequilibrium  condition  in  the ambient  stream. They a r e ,  
however, a f fec ted  by the  nonequilibriwn  condition  behind  the  leading-edge 
shock. The explanation of such rather  unexpected phenomena i s  tha t   t he   p re s -  
sure induced  by  the  nonequilibrim  ambient  condition i s  the  same on the  upper 
and  lower  surface,  hence,  there i s  no 
(and,  therefore,   center of pressure) .  
drag. 

The drag  coeff ic ient   consis ts  of 
as a f l a t  p l a t e  a t  an  angle of a t t a c k  

e f f e c t  on the  l i f t  and  pitching moment 
Such i s  not   the  case,  however, f o r   t h e  

th ree   pa r t s :  The f irst  p a r t  i s  the  same 
and i s  given  by  the  expression 

10 



The second p a r t  i s  the  drag due t h e   t h i c k n e s s   o f   t h e   a i r f o i l  and i s  
given  by  the  expression 

F ina l ly ,   t he   e f f ec t s  of the  nonequilibrium  condition  in  the  ambient stream t o  
the  drag i s  given by 

The l i f t - d r a g   r a t i o   c a n  be  obtained, of course, by use of equations (12) 
and (15). I n   p a r t i c u l a r ,  f o r  the   f la t   p la te   in   an   equi l ibr ium  f ree   s t ream,  
t h e   l i f t - d r a g   r a t i o  i s  simply  equal t o  1/a. Thus, within  f irst-order  accu- 
r a c y ,   t h e   l i f t - d r a g   r a t i o  of a f la t  p l a t e  i s  not  affected by t h e   l o c a l  non- 
equilibrium  conditions.  

The values of Cp and CD depend on the  shape  of t h e   a i r f o i l .  To obtain 
representative  values  for them we shal l   consider  a s p e c i f i c   a i r f o i l ,  namely, 
the   b iconvex   a i r fo i l ,  which i s  given  by 

E f = l - 2 -  
2 

The corresponding Cp and CD a re  

where 

11 



Figure 2 shows the   va r i a t ion  of l i f t ,  p i tch ing  moment, and ( f o r  a 
biconvex a i r f o i l   i n   a n   e q u i l i b r i u m   a i e n t  stream) components  of the  drag 
coef f ic ien ts   versus  2 f o r  a = 1.5.  When the  chord  length i s  small compared 
wi th   the   re laxa t ion   length  ( 2  3 0 ) ,  the   f low  pas t   the   in i t ia l   shock ,   no t  hav- 
ing  suff ic ient   t ime  for   re laxat ion  toward  the  equi l ibr ium  condi t ion,  i s  
e s sen t i a l ly   f rozen .  When the  chord  length i s  la rge  compared wi th   the  relaxa- 
t ion   l eng th  ( I  3 a), however, the  f low  behind  the  leading edge i s  mostly  in 
an  equilibrium  condition.  Direct  computation w i l l  a l s o   v e r i f y   t h a t   i n   t h e  
two limits, the  coeff ic ients   take  the  fol lowing  asymptot ic   values:  

equilibrium: 

1/4 C, Bt / a  and 

‘0 due lo a B f / a ‘  

,816 

80 L I I I 
00 I .I I O  IO  0 

Chard length/K 

Figure 2 .- Drag, lift, and p i tch ing  
moment of a biconvex a i r f o i l   i n  
a nonequi l ibr ium  f low  f ie ld   for  
(Q2 - 1)/(Mf2 - 1) = 1.5. 
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0 ’  I I I I 
01 

~ . 
I 10 IO I00 

Chord length / X  

frozen: 

2 

lim cD = pf 4 (a2 + +) 
2 4  0 

Thus the   coe f f i c i en t s   i n   t he   f rozen  
l imit   are   larger   than  the  correspond-  
ing  ones in   t he   equ i l ib r ium limit by 
the   f ac to r  of ,/-a. For the  case of 
a = 1.5,  which i s  not  unusual  in mod- 
e rn   h igh - t empera tu re   f ac i l i t i e s ,   t h i s  
means a difference of roughly 20 per- 
cen t .  

Figure 3 presents   the  change of 
CD (ACDnf) of a biconvex a i r f o i l  when 
the  condition  in  the  anibient  stream 
i s  out of equilibrium. 

The drag  induced by t h e  nonequi- 
librium free  stream i s  negative.  The 
reason i s  that  the  pressure  induced by 

Figure 3 .- Drag on a biconvex a i r f o i l  the  nonequilibrium  ambient  stream 
increases   monotonical ly   af ter   the   ini-  
t i a l  jump at  the  leading-edge shock; 
consequently, a n e t   t h r u s t   r e s u l t s .  

due to   the  nonequi l ibr ium  free   s t ream 
f o r  (Me2 - 1 ) / ( M f 2  - 1) = 1.5. 
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Note t h a t  ACDnf i s  zero when the  f low i s  frozen  behind &he leading  edge 
since no  reconibination  (for  dissociating  case)  occurs. When the  condi t ion 
behind  the  leading edge i s  equilibrium ACD, i s  again zero  because  the 
pressure  induced  by  the  nonequilibrium stream i s  constant i n  the  equi l ibr ium 
limit. 

We see  that ,   wi thin  the  f i rs t -order   per turbat ion  approximation,   the  
axibient stream nonequilibriwn  actually  has no e f f e c t  on t h e  l i f t  and  the 
pi tching moment. The l o c a l  stream nonequilibriwn, however,  does a f f e c t   t h e  
l i f t  and moment, as wel l  as the   d rag   coe f f i c i en t s .  The drag  coeff ic ient ,  on 
the  other  hand, i s  af fec ted  by the  nonequilibrium  condition i n  t h e   f r e e  
stream by an amount of 

which i s  (1) propor t iona l   t o  Gm(q, - sa*), ( 2 )  dependent on the shape  of the  
a i r f o i l ,  and ( 3 )  not  dependent on the  angle of a t t a c k .  

CASES WJ3EEE Ku f KZ 

So fa r  we have t rea ted   the   case  where the  re laxat ion  length on the upper 
surface of t h e   a i r f o i l  i s  near ly   the same as t h a t   i n   t h e  lower  surface  ( i .e . ,  
Ku "= K l  = K, which i s  approximately  correct when 8, >> a ) .  In   general ,  due 
t o   t h e   h i g h e r  compression,  the  relaxation  length i s  shorter  on t h e  lower  sur- 
f a c e ,   t h a t  i s ,  K 2  < Ku. If the  angle of a t tack  i s  larger   than  the  leading-  
edge  slope, Ku > & due t o  expansion.  Since K, i s  assumed t o  be i n f i n i t e ,  
for   th i s   case ,   the   condi t ion   i s   f rozen  on the  upper  surface. 

The case where Ku # IC2 i s  more complicated  than  the  case we have 
t r e a t e d .  We sha l l   b r i e f ly   desc r ibe  such a more general   case,  however,  and 
conclude by g iv ing   t he   exp l i c i t   r e l a t ions  for the  aerodynamic coef f ic ien ts  
when 8, _< a ,  t h a t  i s ,  Ku + a. 

For convenience, l e t  

then 

K l  = K ,  and K U = 3 = L K  
C I P  

l1 = 2 , and 2, = p l  

Note t h a t  0 5 p 5 1. 

The r e l a t i o n  i n  equation  (6b) i s  s t i l l  appl icable   direct ly   for   the  lower 
surface  since 51 = E = x/K (for 7 = 0). For the  upper  surface  the  variable 
5 must be  replaced  by Eu = 115 and 2 by 2, = p l .  Thus we have 



The expressions  for Cp a r e ,   t he re fo re ,  

By d i r ec t   subs t i t u t ion  of Cp from  equations  (20)  into  equations (8) 
through (ll), one can  obtain  the  aerodynamic  characteristics of a n   a i r f o i l  
when Ku f Kl. An in te res t ing   case  i s  where p = 0 .  For th i s   case   the   f low 
on the  upper  surface i s  i n  a frozen  condition. The value of CpU is given 
by,  therefore, 

(Note t h a t  f _< 1. ) While C p l  remains  the same as before ,   tha t  i s ,  



The corresponding  aerodynamic  coefficients are 

where 

It i s  apparent,  from  equations (22), that   in   the  present   case,   because 
of the  difference between the  re laxat ion  lengths  of the  upper  and  lower sur- 
faces  (K, # K l ) ,  t h e  aerodynamic coeff ic ients   are   fur ther   affected.   Consider  
CL of equation  (22a) as an example : Equation (22a) can  be wr i t ten  as a sum 
of three  terms,   that  i s ,  

Because the   re laxa t ion   length  i s  shorter  on t h e  lower  surface (K1 < K&), 
t he   p re s su re   r i s e  due t o  recombination  (for  dissociation  equilibrium) i s  
higher on the  lower  surface  than  that  on the  upper  surface;  the l i f t  corre- 
sponding t o   t h i s  i s  given by t h e  f irst  term. 

The local  f low  condition i s  a l so   d i f f e ren t  on the  lower  and  the  upper 
surfaces.  The condition on t h e  lower  surface i s  closer   to   equi l ibr ium.  This  



gives a higher   pressure due t o   t h e   t h i c k n e s s  of t h e   a i r f o i l  on t h e  upper 
surface  and a corresponding  negative lift ind ica t ed   i n   t he  second term. 

F ina l ly ,   t he   suc t ion  on t h e  upper  surface due t o   t h e  angle of a t t ack  i s  
higher   s ince  the  condi t ion on the  upper  surface i s  c loser   to   f rozen .   This  
gives   an  increase of l i f t  due t o   t h e   a n g l e  of a t t ack  as i n d i c a t e d   i n   t h e  
th i rd   t e rm  in   equa t ion  (24) . 

CONCLUDING REMARKS 

We may  now  make a few conjectures on the   cha rac t e r i s t i c s  of l i f t i n g  
bodies   in   genera l ,  based on the  observation of the  preceding  resul ts .  

When the   re laxa t ion   length  i s  r e l a t ive ly   cons t an t  on the  windward and 
the  leeward sides, t h e   e f f e c t  of the  nonequilibrim  ambient  condition on the  
lift and p i tch ing  moment i s  r e l a t i v e l y  small but w i l l  a f fec t   the   d rag  and the  
p re s su re   d i s t r ibu t ion .  The local   nonequi l ibr im  condi t ions, ,  however, w i l l  
a f f e c t  a l l  of t h e  aerodynamic c h a r a c t e r i s t i c s .   I n   f a c t ,   t h e  ae.rodynamic coef- 
f ic ien ts   a re   normal ly   h igher   for   bodies  when the   loca l   s t ream i s  out of 
equ i l ib r  im . 

In t h e  more general   case  the  re laxat ion  length i s  shor te r  on t h e  wind- 
ward side than that  on the  leeward  side.  Thus, the  condi t ion on the  windward 
side i s  c lose r   t o   equ i l ib r ium,  o r ,  i n   o the r  words, the  leeward  side i s  c loser  
t o   f r o z e n .   I n   t h i s   c a s e  a l l  of t h e  aerodynamic coef f ic ien ts   a re   a f fec ted  by 
both  the  anbient   and  the  local   nonequi l ibr ium  condi t ions.  The ambient non- 
equi l ibr ium  condi t ion w i l l  give  an  increase  in l i f t .  
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